Dynamical Link between the Barents–Kara Sea Ice and the Arctic Oscillation

نویسندگان

  • XIAO-YI YANG
  • XIAOJUN YUAN
  • MINGFANG TING
چکیده

The recent accelerated Arctic sea ice decline has been proposed as a possible forcing factor for midlatitude circulation changes, which can be projected onto the Arctic Oscillation (AO) and/or North Atlantic Oscillation (NAO)mode.However, the timing and physicalmechanisms linkingAO responses to theArctic sea ice forcing are not entirely understood. In this study, the authors suggest a connection betweenNovember sea ice extent in the Barents and Kara Seas and the following winter’s atmospheric circulation in terms of the fast sea ice retreat and the subsequent modification of local air–sea heat fluxes. In particular, the dynamical processes that link November sea ice in the Barents and Kara Seas with the development of AO anomalies in February is explored. In response to the lower-tropospheric warming associated with the initial thermal effect of the sea ice loss, the large-scale atmospheric circulation goes through a series of dynamical adjustment processes: The decelerated zonal-mean zonal wind anomalies propagate gradually from the subarctic to midlatitudes in about one month. The equivalent barotropic AO dipole pattern develops in January because of wave–mean flow interaction and firmly establishes itself in February following the weakening and warming of the stratospheric polar vortex. This connection between sea ice loss and the AO mode is robust on time scales ranging from interannual to decadal. Therefore, the recent winter AO weakening and the corresponding midlatitude climate change may be partly associated with the early winter sea ice loss in the Barents and Kara Seas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Early Winter Sea Ice Variability under the Recent Arctic Climate Shift*

This study reveals that sea ice in the Barents and Kara Seas plays a crucial role in establishing a new Arctic coupled climate system. The early winter sea ice before 1998 shows double dipole patterns over the Arctic peripheral seas. This pattern, referred to as the early winter quadrupole pattern, exhibits the anticlockwise sequential sea ice anomalies propagation from theGreenland Sea to the ...

متن کامل

Anthropogenic radioactivity in the Arctic Ocean--review of the results from the joint German project.

The paper presents the results of the joint project carried out in Germany in order to assess the consequences in the marine environment from the dumping of nuclear wastes in the Kara and Barents Seas. The project consisted of experimental work on measurements of radionuclides in samples from the Arctic marine environment and numerical modelling of the potential pathways and dispersion of conta...

متن کامل

Statistical Modeling of Sea Ice Concentration Using Satellite Imagery and Climate Reanalysis Data in the Barents and Kara Seas, 1979-2012

Extensive sea ice over Arctic regions is largely involved in heat, moisture, and momentum exchanges between the atmosphere and ocean. Some previous studies have been conducted to develop statistical models for the status of Arctic sea ice and showed considerable possibilities to explain the impacts of climate changes on the sea ice extent. However, the statistical models require improvements to...

متن کامل

Atmospheric circulation patterns which promote winter Arctic sea ice decline

The impact of winter atmospheric blocking over the Ural Mountains region (UB) coincident with different phases of the North Atlantic Oscillation (NAO) on the sea ice variability over the Barents and Kara Seas (BKS) in winter is investigated. It is found that the UB in conjunction with the positive phase of the NAO (NAOþ) leads to the strongest sea ice decline. During this phase composites and t...

متن کامل

Recent retreat of major outlet glaciers on Novaya Zemlya, Russian Arctic, influenced by fjord geometry and sea-ice conditions

Substantial ice loss has occurred in the Russian High Arctic during the past decade, predominantly on Novaya Zemlya, yet the region has been studied relatively little. Consequently, the factors forcing mass loss and the relative contribution of ice dynamics versus surface melt are poorly understood. Here we evaluate the influence of atmospheric/oceanic forcing and variations in fjord width on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016